

12° EXAME DE ADMISSÃO - 03/06/17

LEIA ATENTAMENTE AS INSTRUÇÕES A SEGUIR:

Você recebeu do fiscal o seguinte material: um caderno com **30 questões** e um **cartão de respostas** personalizado para a prova objetiva. Observe no cartão de respostas se o **seu nome** e **CPF**, contidos no campo de identificação, conferem com os seus dados. **Assine e date no cartão de respostas**.

ATENÇÃO!

- 1 Verifique o número de questões e folhas de sua prova.
- **2 -** O cartão de respostas não pode ser dobrado, amassado, rasurado, molhado, manchado, ter rabisco, rubrica, desenho, ou conter qualquer registro fora do local destinado à sua resposta, pois será inutilizado.
- **3** Para cada uma das questões, no cartão de respostas, são apresentadas 5 (cinco) alternativas classificadas com as letras: **(A)**, **(B)**, **(C)**, **(D)** e **(E)**. Você só deve assinalar uma **única resposta**, a que você julgar correta.
- **4 -** A maneira correta de marcar as respostas no cartão é preencher, fortemente, com caneta esferográfica de tinta preta ou azul, o interior do quadrado correspondente à letra escolhida, sem ultrapassar os seus limites, conforme exemplo a seguir:

A B C D E

- **5 A indicação de mais de uma alternativa anula a questão**, mesmo que uma das respostas esteja correta. A resposta em branco também será **anulada**. **Qualquer outra marcação**, por mais leve que seja, **em quadrícula diferente da alternativa escolhida, também anula sua questão**.
- **6 -** O tempo disponível para esta prova é de 3 (três) horas. Reserve 15 (quinze) minutos, antes do prazo de término da prova, para o preenchimento do cartão de respostas, a fim de evitar rasuras ou possíveis enganos.
- 7 A realização da **prova** é, estritamente, **individual**.
- **8** Ao terminar, entregue ao fiscal o cartão de respostas.

BOA PROVA

GESTÃO ATUARIAL

QUESTÃO 1

Em uma seguradora que trabalha com grandes riscos (aeronáutico, risco de petróleo, marítimo, etc), com retenção elevada, qual é o risco que normalmente responde pela maior parte da necessidade de capital?

- (A) Operacional
- (B) Subscrição
- (C) Mercado
- (D) Crédito
- (E) Liquidez

QUESTÃO 2

Qual o principal risco gerado para uma seguradora com a contratação de resseguro?

- (A) Risco de Crédito
- (B) Risco de Subscrição
- (C) Risco de Mercado
- (D) Risco Operacional
- (E) Risco de Liquidez

QUESTÃO 3

Indique aquelas que representam medidas de risco na análise de solvência:

- (A) Média, Variância e VaR
- (B) Média, TVaR e Variância
- (C) Mediana, VaR e TVaR
- (D) Mediana, Desvio Padrão e Variância
- (E) VaR, TVaR e Desvio Padrão

QUESTÃO 4

Qual o principal efeito da diversificação de riscos?

- (A) Diminui a relação entre o risco operacional e o risco de mercado
- (B) Reduz a necessidade relativa de capital para solvência
- (C) Aumenta a necessidade de realização de transferência de risco
- (D) Diminui o risco de mercado
- (E) Diminui a necessidade de constituição de provisões técnicas

Aponte a única afirmativa verdadeira quanto a prêmios e riscos:

- (A) Quanto maior o número de riscos segurados maior o carregamento de segurança necessário no cálculo do prêmio puro
- (B) Quanto menor a frequência de sinistros, maior é a volatilidade do risco
- (C) Quanto maior a transferência de risco, maior o risco de subscrição
- (D) O prêmio puro é sempre menor do que o prêmio de risco
- (E) O prêmio comercial é igual ao prêmio de risco mais o carregamento para despesas

QUESTÃO 6

Quais os contratos de resseguro abaixo que são proporcionais, ou seja, as recuperações de resseguro são na mesma proporção da cessão do prêmio de resseguro?

- (A) Quota Share e Catástrofe
- (B) Excesso de Danos e Excedente de Responsabilidade
- (C) Catástrofe e Excedente de Responsabilidade
- (D) Excesso de Danos e Stop Loss
- (E) Quota Share e Excedente de Responsabilidade

QUESTÃO 7

Na realidade atual do seguro saúde no Brasil, em que os seguros não podem ser cancelados unilateralmente pela operadora de saúde e que os aumentos de prêmio são definidos pela ANS, com o aumento por faixa etária limitada pela ANS, com o último reajuste aos 59 anos, qual tipo de regime financeiro ele está inserido, sob o ponto de vista atuarial?

- (A) Regime Financeiro de Repartição Simples
- (B) Regime Financeiro de Repartição de Capitais de Cobertura
- (C) Regime Financeiro de Capitalização
- (D) Regime Financeiro de Repartição Simples até os 59 anos e de Repartição de Cobertura a partir dos 60 anos
- (E) Regime Financeiro de Repartição de Capitais de Cobertura até os 59 anos e de Repartição Simples a partir dos 60 anos

QUESTÃO 8

Qual a importância do estabelecimento de um limite de retenção de riscos para uma empresa que assume riscos?

- (A) Homogeneizar os riscos assumidos, de modo a transferir as pontas de risco para um terceiro
- (B) Reduzir a frequência de sinistros
- (C) Reduzir o custo administrativo ao reduzir o número de sinistros
- (D) Reduzir o custo com resseguro
- (E) Nenhuma das respostas acima

Qual a afirmativa errada em relação ao cálculo do IBNR – Provisão de Sinistros Ocorridos mas não Avisados?

- (A) O método de Bornhuetter-Ferguson mescla o método de desenvolvimento com o método da sinistralidade
- (B) Se a seguradora altera o ritmo de pagamento de sinistros o método de desenvolvimento dos sinistros incorridos costuma ser melhor do que o método do desenvolvimento dos sinistros pagos
- (C) Quanto maior o número de períodos considerados no cálculo do IBNR, menor será a cauda a ser aplicada nos fatores de desenvolvimento
- (D) A escolha dos fatores de desenvolvimento deve ser feita a partir da observação de diversas medidas estatísticas calculadas em diversos períodos
- (E) Quanto maior o número de períodos utilizados no cálculo do IBNR, maior é a imprecisão no cálculo por conter um número maior de períodos com sinistros ainda não avisados

QUESTÃO 10

Qual a importância do Teste de Adequação de Passivos para uma seguradora?

- (A) Avaliar se os passivos estão cobertos com ativos garantidores que possuem liquidez
- (B) Avaliar se existe um casamento entre o ativo e o passivo
- (C) Avaliar se as Provisões Técnicas constituídas são suficientes para os compromissos futuros obtidos a partir de premissas realistas
- (D) Avaliar se as Provisões Técnicas foram calculadas exatamente como consta da Nota Técnica Atuarial
- (E) Avaliar se os Passivos estão adequados para garantir o pagamento dos sinistros futuros conforme as premissas da Nota Técnica Atuarial

PROBABILIDADE E ESTATÍSTICA

QUESTÃO 11

Um posto de gasolina é reabastecido uma vez por semana. A função de densidade de probabilidade f(x) da variável aleatória volume X (em dezenas de milhares de litros) demandado semanalmente é dada por

$$f_{x}(x) = \begin{cases} x-1 & 1 \le x \le 2\\ 3-x & 2 \le x \le 3\\ 0 & caso \ contrário \end{cases}$$

A quantidade mínima de abastecimento semanal de gasolina para que não haja desabastecimento em mais do que 4,5% das semanas é:

- (A) 2,3
- (B) 2,5
- (C) 2,7
- (D) 2,9
- (E) 3,0

Seja $X_1, X_2, ..., X_n$ uma amostra aleatória da distribuição normal com média μ desconhecida e variância igual a 1. Deseja-se testar H0: $\mu = \mu_0$ versus H1: $\mu \neq \mu_0$. Suponha n = 16 e região crítica da forma $|\overline{X} - \mu_0| \ge c$. O valor de **c** tal que a significância do teste seja 0,01 é, aproximadamente, igual a:

- (A) 0.32
- (B) 0,41
- (C) 0.49
- (D) 0.58
- (E) 0,64

QUESTÃO 13

As principais qualidades de um estimador de parâmetros estatísticos são:

- (A) risco mínimo, ausência de vício, suficiência, proximidade
- (B) consistência, ausência de vício, eficiência, suficiência
- (C) risco mínimo, proximidade, eficiência, suficiência
- (D) consistência, ausência de vício, proximidade, suficiência
- (E) proximidade, ausência de vício, eficiência, suficiência

QUESTÃO 14

Ao analisar dados experimentais de uma certa variável aleatória contínua de interesse, foi observado que o histograma dos dados se comportava como uma parábola restrita ao intervalo [0,3] e por isso resolveu-se modelar probabilisticamente a variável segundo a seguinte função de densidade de probabilidade:

$$f(x) = \begin{cases} cx^2, se \ 0 \le x \le 3 \\ 0, caso \ contrário \end{cases}$$

O valor da mediana da distribuição teórica é dado por

- (A) $\frac{3}{2}$ (B) $\frac{3}{4}$
- (C) $\frac{3\sqrt[3]{4}}{2}$
- (D) $\sqrt[3]{4,5}$
- (E) $\frac{1}{2}$

Uma seguradora classifica seus segurados em duas categorias de risco: 70% dos segurados são classificados como de "baixo risco" e 30%, de "alto risco". As probabilidades de que um segurado de "baixo risco" e um de "alto risco" reclamem por indenização em um determinado ano são, respectivamente, de 0,20 e 0,60. Um segurado reclama uma indenização de sinistro neste ano. A probabilidade de que o segurado que reclamou a indenização seja de "baixo risco" é igual a:

- (A) 3/8
- (B) 5/8
- (C) 3/16
- (D) 7/16
- (E) 1/4

QUESTÃO 16

Numa amostra de 40 observações foram reconhecidos dois valores atípicos (outliers), a saber, 28 e 320. Sabendo-se que a média da amostra completa foi 60, que percentual de variação sofreria esta média, se fossem desconsiderados os valores atípicos?

- (A) 16%
- (B) -24,4%
- (C) 10%
- (D) +20%
- (E) + 15%

QUESTÃO 17

Uma amostra aleatória de tamanho 5 foi obtida de uma população e os dados obtidos foram modificados da seguinte forma: adicionou-se aos dados o valor de 4 e em seguida esses resultados foram divididos por 2. Se a média e a variância dos dados modificados foram, respectivamente, 10 e 4, qual o valor do coeficiente de variação dos dados originais?

- (A) $\frac{1}{4}$

- (B) $\frac{1}{5}$ (C) $\frac{4}{5}$ (D) $\frac{16}{5}$ (E) $\frac{2}{5}$

Deseja-se testar as seguintes hipóteses sobre o parâmetro de uma variável aleatória exponencial com função de densidade de probabilidade dada por

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x > 0 \\ 0, & caso \ contrário \end{cases}$$
$$\begin{cases} H_0 : \lambda = 1 \\ H_1 : \lambda = \frac{3}{4} \end{cases}$$

O critério estabelecido é, com base numa amostra de tamanho 1, rejeitar a hipótese nula se $x \ge a$, com a > 0 um valor previamente estipulado. Nesse contexto, podemos afirmar que as probabilidades dos erros do tipo I e II valem, respectivamente:

- (A) e^{-a} e $1 e^{-3a}$
- (B) $e^{-a} e^{-3a/4}$
- (C) $1 e^{-a} e 1 e^{-3a}$
- (D) $1 e^{-3a/4} e 1 e^{-a}$
- (E) $1 e^{-a} e 1 e^{-3a/4}$

QUESTÃO 19

Seja X uma variável aleatória absolutamente contínua com função de densidade de probabilidade dada por $f(x) = \frac{1}{\beta}x$, para $0 \le x \le \alpha$, e f(x) = 0, caso contrário, com $\alpha > 0$ e $\beta > 0$. Se a mediana da distribuição vale 4, então o valor de **a** é:

- (A) $\sqrt{2}$
- (B) $\frac{\sqrt{2}}{2}$
- (C) 1
- (D) $\frac{1}{2}$
- (E) $4\sqrt{2}$

Sejam X e Y duas variáveis aleatórias independentes, tais que $X \sim N(1,1)$ e $Y \sim N(1,8)$. Definindo W = -X + Y + 5 e $\Phi(Z) = \int_{-\infty}^{Z} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$ qual o valor de P(2 < W < 7)?

(A)
$$\Phi\left(\frac{\sqrt{3}}{3}\right) - \Phi\left(-\frac{\sqrt{3}}{2}\right)$$

(B)
$$\Phi\left(\frac{2\sqrt{7}}{7}\right) - \Phi\left(-\frac{3\sqrt{7}}{7}\right)$$

(C)
$$\Phi\left(\frac{\sqrt{14}}{7}\right) - \Phi\left(-\frac{3\sqrt{14}}{7}\right)$$

(D)
$$\Phi\left(-\frac{2}{3}\right) - \Phi\left(-2\right)$$

(E)
$$\Phi\left(\frac{2}{3}\right) - \Phi\left(-1\right)$$

MODELAGEM ESTATÍSTICA

QUESTÃO 21

Um analista dispõe de um banco de dados de segurados contendo um grande número de variáveis correlacionadas. Ele deseja, a partir de combinações das variáveis originais, construir um conjunto menor de variáveis não correlacionadas, preservando tanto quanto possível a variabilidade contida nos dados originais. A técnica mais adequada para este fim é:

- (A) Análise Discriminante
- (B) Análise de Componentes Principais
- (C) Análise de Variância
- (D) Análise de Conglomerados
- (E) Análise Fatorial

QUESTÃO 22

Em um cálculo de regressão, se o coeficiente angular é zero, concluí-se que:

- (A) O modelo deve ser o múltiplo
- (B) O tamanho da amostra é muito pequeno
- (C) Não há relacionamento linear entre as variáveis
- (D) As observações têm muita dispersão
- (E) Não existe nenhum relacionamento entre as variáveis

Considere N observações de uma série temporal Z_t (t = 1, 2,, N). Considere a série temporal representada em função do modelo de duas componentes não observáveis T_t e a_t , tal que, $Z_t = T_t + a_t$, onde T_t representa a componente de tendência e a_t , a componente aleatória. A suposição sobre as condições da componente aleatória no modelo é de que ela tenha:

- (A) média 1 e variância constante igual a $N\frac{2}{2}$
- (B) média 1 e variância constante igual a σ_{lpha}^2
- (C) média 0 e variância constante igual a $N\frac{2}{2}$
- (D) média 0 e variância constante igual a σ_{lpha}^2
- (E) média 0 e variância constante σ_{lpha}^2 igual a 1

QUESTÃO 24

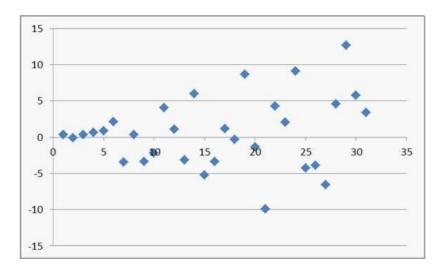
Para modelagem do número de sinistro em um seguro de vida foi utilizada a Teoria de Modelos Lineares Generalizados. A variável resposta escolhida (y) foi modelada usando uma distribuição Poisson, e são usadas duas varáveis explicativas: idade (x) e sexo (s), esta última sendo uma variável dicotômica (dummy).

Dadas as informações abaixo, calcule a média do número de sinistro estimada para uma pessoa de 50 anos do sexo masculino:

Modelo: $y \sim \text{Poisson}(\lambda)$

$$\ln(\lambda) = \beta_0 + \beta_1 x + \beta_2 s$$

onde s = 0, para o sexo masculino, e s = 1, para o sexo feminino.


Valores estimados:

$$\hat{\beta}_0 = 0.11$$
; $\hat{\beta}_1 = 0.08$; $\hat{\beta}_2 = 0.5$

- (A) 100
- (B) 61
- (C) 5
- (D) 50
- (E) 150

Após a realização de uma regressão linear simples, um pesquisador resolve analisar os resíduos resultantes do modelo encontrado. O gráfico abaixo mostra no eixo *y* os resíduos e no eixo *x* a variável independente.

A análise do gráfico sugere que:

- (A) Os resíduos se distribuem da forma esperada
- (B) O modelo não seja linear
- (C) Existem elementos atípicos nos dados que deveriam ser eliminado
- (D) A hipótese de homocedasticidade (mesma variância) não foi satisfeita
- (E) A hipótese de normalidade dos resíduos não foi satisfeita

QUESTÃO 26

Como atuário de uma seguradora de veículos, você está interessado em predizer o preço do seguro (em reais) de uma determinada cidade, de acordo com o valor do carro (em reais) do segurado, baseado em uma amostra de 200 carros pela tabela de preços médios de veículos no mercado nacional, nos últimos 12 meses. A partir do ajuste de um modelo de regressão linear simples que relaciona o preço do seguro pelo valor do carro, calcule o valor do seguro para um carro de R\$30.000,00.

Valores estimados para intercepto e coeficiente angular respectivamente: $\hat{\beta}_0 = 66,20 \, \text{e} \, \hat{\beta}_1 = 0,08$.

- (A) R\$ 1.800,00
- (B) R\$ 2.156,88
- (C) R\$ 2.466,20
- (D) R\$ 2.378,43
- (E) R\$ 1.983,74

A amostragem representa o processo de obtenção de amostras, baseado em uma parte de uma população. Suponha que um pesquisador dividiu a população em grupos segundo alguma característica conhecida da população e de cada um desses grupos são selecionados amostras em proporções convenientes, com objetivo de melhorar a precisão das estimativas daquela população. O processo de amostragem utilizado pelo pesquisador foi:

- (A) Amostragem por conglomerados
- (B) Amostragem estratificada
- (C) Amostragem aleatória simples com reposição
- (D) Amostragem sistemática
- (E) Amostragem aleatória simples sem reposição

QUESTÃO 28

A partir de dados de seguro automotivo, um atuário pretende estudar a variável ocorrência ou não ocorrência de um sinistro para o i-ésimo segurado. Como covariável considere o preço do automóvel, onde o principal interesse é a probabilidade de ocorrer um sinistro. O modelo mais adequado a ser utilizado pelo especialista é:

- (A) Modelo Gama
- (B) Modelo Gaussiano
- (C) Modelo Poisson
- (D) Modelo Binomial
- (E) Modelo Weibull

QUESTÃO 29

Uma seguradora de automóveis estima que probabilidade de ocorrência de um sinistro em qualquer um de seus segurados é da ordem de 3/20. Adicionalmente, sabe-se que a proporção de homens entre os sinistrados é de 4/5 e que a proporção de mulheres entre os sinistrados é de apenas 1/5. Já entre os não sinistrados a proporção de homens é de 13/17 e das mulheres 4/17. Por meio do Teorema de Bayes calcule a probabilidade de ocorrência de sinistro para uma mulher.

- (A) 2/6
- (B) 1/5
- (C) 3/6
- (D) 1/6
- (E) 2/5

QUESTÃO 30

Uma seguradora com problemas de solvência tem apenas R\$250.000,00 em caixa. Suponha que todos os seus segurados possuem um prêmio de R\$100.000,000 e que os sinistros ocorrem através de um Processo de Poisson com taxa de dois sinistros por ano. Qual a probabilidade da seguradora falir em um ano?

- (A) $1 5e^{-2}$
- (B) $1 4e^{-2}$
- (C) $1 5e^{-1/2}$
- (D) 1/2
- (E) $1 2\log 5$

Tabela da Distribuição Normal Reduzida

Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000